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Conductors Parallel to z-Axis

• Let                designate a rectangular coordinate

system, and let us a consider an ensemble of conductors

parallel to the z-axis and uniform in z.

• The magnetic flux density,    , produced by such current

distribution can be shown to be parallel to the          plane

and uniform in z
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Complex Magnetic Flux Density

• Let s designate the complex variable variable defined

s  =  x + i y

and let us introduce the complex magnetic flux density

density, B, defined as

B(s)  = By(x,y) + i Bx(x,y)

• It can be derived from Maxwell’s equations that, outside

the conductors, B is a single-valued analytic function of s.

• Note that this property is only valid for the above

definition of B and does not apply to [Bx(x,y)+i BY(x,y)].
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Multipole Expansion (1/2)

• Let R
i 
designate the minimum distance between the

conductors and the z-axis and let Γ
i
 designate the disk of

center O and of radius R
i
.

• The analytic function B can be expanded into a Taylor’s

series around the disk origin
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where B(n) designate the n-th derivative of B with respect

to s.
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Multipole Expansion (2/2)

• It is customary to re-write the previous power series

expansion under the form.

where Rref is a so-called reference radius, and Bn and An

are real and constant coefficients related to B(n-1) (0)  by
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Dipole Field Coefficients (1/3)

• Let us first consider a magnet such, that in the series

expansion of B, all coefficients are nil except B
1
.

• Then we have

B(s)  = B
y
 + i B

x  
= B

1

• The magnetic flux density

produced by such a magnet
is uniform and vertical.

•  It corresponds to a pure

normal dipole magnetic flux
density with a pole axis
parallel to the y-axis.
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Dipole Field Coefficients (2/3)

• Let us now consider a magnet such, that in the series

expansion of B, all coefficients are nil except A
1
.

• Then we have

B(s)  = B
y
 + i B

x  
= i A

1

• The magnetic flux density

produced by such a magnet is

uniform and horizontal.

• It corresponds to a so-called
pure skew dipole magnetic flux

density, with a pole axis rotated

by an angle (-π/2) with respect
to the y-axis.
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Dipole Field Coefficients (3/3)

• B
1
 and A

1
 are referred to as normal and skew

dipole field coefficients.
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Quadrupole Field Coefficients
(1/4)

• Let us now consider a magnet such, that in the series
expansion of B, all coefficients are nil except B

2
.

• Then we have

• The y-component of the magnetic flux density produced

by such a magnet is proportional to x, while the x-

component is proportional to y, and the proportionality

coefficients are the same.
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Quadrupole Field Coefficients
(2/4)

• It corresponds to a pure
normal quadrupole magnetic

flux density, with pole axes

parallel to the first and second

bisectors.

• The quadrupole field
gradient, g, is simply

ref

2    
R

B
g =
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Quadrupole Field Coefficients
(3/4)

• Let us now consider a magnet such, that in the

series expansion of B, all coefficients are nil

except A
2
.

• Then, we have
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Quadrupole Field Coefficients
(4/4)

• This corresponds to a so-
called skew quadrupole

magnetic flux density, with

pole axes rotated by an angle

(-π/4) with respect to the first

and second bisectors.

• B
2
 and A

2
 are referred to as

normal and skew quadrupole

field coefficients.
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2N-Pole Field Coefficients

• Similarly to the case n = 1 and n = 2 and, it can be

shown that the coefficients B
n
 and A

n
 correspond to pure

2n-pole magnetic flux densities, and that the pole axes

associated with A
n
 are rotated by an angle [-π/(2n)] with

respect to those associated with B
n
.

• B
n
 and A

n
 are referred to as normal and skew 2n-pole

field coefficients.
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Reference Radius

• The reference radius is usually chosen so as to

correspond to the region of space where the field

must have good quality for beam optics reasons.

Example: for LHC, Rref is set to 17 mm.
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Single Current Line (1/4)

• let us consider a current line of intensity (-I), parallel to

the z-axis, and crossing the             plane at a point a =

R eiθ different from O.

a-s
B(s)

1
 

2
    

π
µ−= 0I

( )y,xO,
��

• It is easy to derive that

the complex magnetic flux

density, B, produced by

this current line is given by

where µ0 is the magnetic
permeability of vacuum.
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Single Current Line (2/4)

• The above expression can easily be expanded into a

power series
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• Note that all multipole field coefficients are non zero.
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Single Current Line (3/4)

• Let us assume that the above current line is located

within a ferromagnetic yoke of relative permeability, µ,
and of inner radius, Ry.

• The yoke contribution can

be shown to be the same as

that of an image current line

of intensity (-Im) located at a

position a
m
 where

*m

a

a      

2
y

m      and
1

1 R
II =

+µ
−µ=

Here, a* is the complex

conjugate of a.
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Single Current Line (4/4)

• Then, the multipole field coefficients for the current line

with iron yoke,         , are given by
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where                            are the coefficients for the

current line alone in free space.
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• Note that the smaller R
y
, the larger the enhancement.
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Quadrupolet of Current Lines
(1/2)

• Let us know consider a quadrupolet of current lines with

an even symmetry with respect to the x-axis and an odd

symmetry with respect to the y-axis.

• The magnetic flux density

produced by this quadruplet

can be computed by

summing the contributions

from each current line.
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Quadrupolet of Current Lines
(2/2)

• We get

R
R
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• The first term (k=0) corresponds to a pure normal dipole

field parallel to the y-axis.

• The B
2k+1 coefficients are called the allowed multipole

field coefficients for this current distribution.
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Octuplet of Current Lines (1/2)

• Let us finally consider an octuplet of current lines with an

even symmetry with respect to the x- and y-axes and an odd

symmetry with respect to the first and second bisectors.

• As for the quadruplet, the

magnetic flux density can be

computed by summing the

contributions from each

current line.



Lecture IV 25

Octuplet of Current Lines (2/2)

• We get

R
R
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• The first term (k=0) corresponds to a pure normal

quadrupole field with pole axes parallel to the first and

second bisectors.

• For this distribution, the allowed multipole field

coefficients are the normal 2(4k +2)-pole field coefficients.
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Summary

• Basic symmetries of current distribution suitable for

dipole field production are: even symmetry with respect to

x-axis and odd symmetry with respect to y-axis.

• Basic symmetries of current distribution suitable for

quadrupole field production are: even symmetry with

respect to x- and y-axes and odd symmetry with respect

to first and second bisectors.

• Most superconducting accelerator magnet designs

follow these symmetries.
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Cos(pθθθθ) Current Sheet (1/2)

• Let us consider a cylindrical current sheet of radius R,

carrying a linear current density of the form

[–jsheet cos(pθ )]

where jsheet is a constant (in A/mm).

• The magnetic flux density produced inside the cylinder

can be computed by dividing the sheet into elementary

current lines of intensity

[–jsheet R cos(pθ )] dθ

and by integrating the current line contributions between

O and (2π).
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Cos(pθθθθ) Current Sheet (2/2)

• Hence, we have
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• It appears that a cos(pθ) current sheet produces a pure
normal 2p-pole field.
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Sin(pθθθθ) Current Sheet

• Similarly, let us consider a cylindrical current shell with

a linear current distribution of the form

[jsheet sin(pθ )]

• Here, the multipole field coefficients of the magnetic

flux density produced inside the cylinder are given by

2
     and     0           for    0 sheet

ppnn
J

ABpnAB 0µ==≠==

• Hence, a sin(pθ) current sheet produces a pure skew
2p-pole field.



Lecture IV 31

Cos(θθθθ) and Cos(2θθθθ) Coil Designs

• Most dipole or quadrupole magnets rely on coil

geometries, which, in the magnet cross-section,

approximate a cos(θ) or a cos(2θ) current
distribution.

• The approximation is based on cylindrical

current shells of suitable symmetry.
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Cos(θθθθ) Coil Design

• The multipole field
coefficients produced in

the coil aperture are
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Cos(2θθθθ) Coil Design

• The multipole field
coefficients produced in

the coil aperture are
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Multiple-Layer Coil

• The strength of the main
field component can be

raised by using multiple-

layer coils.

• Example: for a two-layer
dipole coil
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Angular Wedges

• Angular wedges can ne
implemented into the coil,

to better approximate cosθ
cos2θ current distribution
and eliminate undesirable

higher-order multipole field

coefficients.

• In theory, p wedges in a
dipole coil quadrant offer

enough free parameters to

set to zero up to (2p+1)

coefficients.
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Practical Coils (1/3)

• In practice, the cylindrical
shells are realized by stacking

slightly-keystoned conductors

into an arch shape.

• The number of layers is
determined by the desired field

or field gradient strength.

• The number of wedges is
determined by field quality

requirements imposed by beam

optics.

SSC Arc Dipole Magnet Coil Layout

(Courtesy R. Gupta)
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Practical Coils (2/3)

• The coil turns are formed by pairing conductors of adjacent
sectors, which, due to the odd symmetry, carry currents in

opposite directions.

(-I)(+I)
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Practical Coils (3/3)

• In the coil ends, the conductors are wound so as to make a U-turn
while clearing enough space for beam tube insertion.

• This confers to the coil a so-called saddle shape.

Winding of Quadrupole

Magnet Coil at CEA/Saclay

Saddle-Shape Coil Assemby

for Dipole Magnet

(Courtesy M.N. Wilson)
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Pros of Cosθθθθ Design

• The cosθθθθ-design is the most effective design in
terms of current distribution and it minimizes the

volume of conductor (thereby, its costs).

• It is well proven (all large superconducting particle

accelerators built up to date rely on it) and can be

made to achieve very high field quality.

• R&D programs at Twenty University, in the

Nertherlands, and at LBNL, in the USA, have

demonstrated the feasibility of Nb3Sn dipole

magnets with fields in the 11-to-13.5-T range.
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Cons of Cosθθθθ Design (1/3)

• The cosθθθθ-design has two main drawbacks
– accumulation of transverse stress over

midplane conductors,

– difficulty of designing and manufacturing coil

ends.

• These issues are particularly troublesome when

using Nb3Sn cables.
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Lorentz Stress Accumulation

• Due to the Lorentz force distribution,

there is a stress accumulation in the

azimuthal direction, which results in high

transverse pressures on the midplane

conductors of coil assemblies.
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Azimuthal Stress Distribution in a Nb
3
Sn

Quadrupole Magnet Coil Assembly

Under Development at CEA/Saclay

(Courtesy C. Gourdin)

High Stress Area

(~150 MPa)
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Coil End Design (1/2)

• In the coil ends, the

conductors are bent

sharply with small radii

or curvature.

• Such bending cannot

be applied to reacted

Nb3Sn cables, and

imposes to rely on a

“wind & react” process.

Winding Test at CEA/Saclay
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Coil End Design (2/2)

• Furthermore, it is desirable to position properly the conductors so as to

minimize the risks of motion during energization.

• This calls for the use of precisely machined (thereby expansive) end

spacers.

• Note that the end spacers are also needed for field quality reasons.

Coil Ends of LHC Dipole Magnets (Courtesy D. Perini)
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Cosθθθθ-Design Perspectives

• As already mentioned, for the past 20 years, the

cosθ-design has been the working horse of NbTi
accelerator magnet developers.

• Encouraging results have been obtained on short

magnet models relying on Nb3Sn cables, which show

that it is worth pursuing in this direction.

• However, the inherent limitations mentioned

above, and the fact that, for Nb3Sn cables, one must

rely on a “wind & react” process, justify that one

looks for alternative designs.
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Iron Yoke (1/3)

• The coils of accelerator
magnets are usually

surrounded by a cylindrical

iron yoke.

• This iron yoke provides a
return path for the magnetic

flux and enhances the

central field or field gradient.

Twin-Aperture LHC Dipole

Magnet Field Lines
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Iron Yoke (2/3)

• For a cylindrical shell located
within an iron yoke of inner

radius, R
y
, the normal 2n-pole

field coefficients with iron,

are given by
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Iron Yoke (3/3)

• The previous equation shows that, the smaller the

yoke inner radius, the larger the enhancement.

• However, there are two limitations on how close

the iron can be brought to the coils

– room must be left for support structure

(see lecture on mechanical design),

– iron saturates for fields above 2 T, resulting

in undesirable distortions

(see lecture on field quality).
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Maximum Quench Current
(1/3)

• The ultimate performance of a superconducting

magnet is determined by the critical current of its
conductor at the operating temperature and
magnetic flux density.

• The magnetic flux density to which the
conductor is exposed is non-uniform over the
magnet coil, but the limit is set by the section
where the magnetic flux density is the highest.
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Maximum Quench Current
(2/3)

• Let Bp = f(I) designate the peak magnetic flux density

on the coil as a function of supplied current, I, and let IC
= g(B,T0) designate the supposedly known cable critical

current as a function of applied magnetic flux density, B,

and operating temperature, T0.

• The intersection between these two curves determines

the maximum quench current of the magnet at T0,

Iqm(T0).
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Maximum Quench Current
(3/3)

T=T0

IC = g(B,T0)

Bp = f(I)
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Operating Current Margin

• In practice, magnets must be operated below

Iqm to ensure that the entire coil is in the

superconducting state and to limit the risks of

premature quenching.

• Let I
op
 designate the operating current.  Then,

the operating current margin of the magnet, mI,

is defined as

( )0qm

op
I     1    

TI

I
m −=
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Current Margin Specifications

• For accelerator magnets, which are produced in

large quantities and where the volume of

superconductor must be minimized to reduce costs,

the operating current margin can be as small as

10%.

• For large detector magnets, where reliability is a

big issue, the current margin can be in excess of

50%.
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Other Designs

• Most other accelerator magnet designs, which

have been or are being developed, try to address

the perceived weaknesses of cosθ design, i.e.,
– management of Lorentz forces,

 – complexity of coil ends.
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Block Design (1/2)

• The conductors are wound into precisely machined

grooves of support structure.

• Each conductor block is supported individually, and the
conductors are parallel to field lines (which cut down
interstrand coupling currents).

• 100-mm-aperture, HERA-
type dipole magnet model

developed by J. Pérot at

CEA/Saclay.

• Two models have been
built and cold-tested in 1981

and have reached short

sample limit with limited

training (5 and 7 quenches).
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Block Design (2/2)

• Manufacturing process is cumbersome.

• Design cannot be extrapolated to small apertures for the
fingers extending between conductor blocks would become
too small.

Laminated Support Structure

(Courtesy J. Pérot)

Coil End Spacer

(Courtesy J. Pérot)
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“Window-Frame” Design

• KEK has built and cold tested in the early eighties a 1-m-long, 60-

mm-aperture dipole magnet model made up of eigth double-pancake

coils assembled in a “window-frame” configuration.

• The magnet (which relied on NbTi cables) reached a maximum field

of 9.3 T at 1.8 K in a few training steps.

(Courtesy T. Shintomi)
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“Common Coil” Design (1/4)

• In 1996, R. Gupta has proposed an innovative twin-aperture

dipole magnet design based on pairs of parallel racetrack-type coils

fed with currents of opposite directions.

(Courtesy R. Gupta)



Lecture IV 61

“Common Coil” Design (2/4)

• The “common coil” design offers at least two

advantages
– the radii of curvature of coil ends may be
large enough to allow manufacturing by the
“react and wind” process when using Nb3Sn
conductors,
– the overall mechanical design is simpler.



Lecture IV 62

“Common Coil” Design (2/4)

• LBNL has built a 1-m-long model made up of two pairs
of Nb3Sn coils with a spacing of 25 mm (the coils were
produced by a “wind and react” process).

Common-Coil Design Dipole Magnet Model

Built at LBNL
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“Common Coil” Design (3/4)

• The model was cold-tested earlier this year (2001) and
has reached a record field of 14.7 T at 4.2 K.

Quench Plot of LBNL

Common-Coil Design Dipole Magnet Model
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“Common Coil” Design (4/4)

• This first result is very promising.

• However, far more work is needed to validate

the “common-coil” design, to demonstrate its
suitability to high-energy accelerators (especially
in terms of field quality), and to assess
production costs.

• R&D programs on common-coil magnets have
now been undertaken at other US national
laboratories.

• In particular, FNAL is investigating the “react
and wind” route.
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 “Stress Management” Design
(1/2)

(Courtesy P. McIntyre)

• Texas A&M University has
developed a dual-dipole
magnet design concept,
where the conductors are
divided into blocks to limit
transverse stresses to less
than 100 MPa.
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 “Stress Management” Design
(2/2)

(Courtesy P. McIntyre)

• A single-aperture NbTi model has
been built and cold tested in late

2000/early 2001.

• The model has reached a maximum
field of 6.6 T at 4.2 K (~ 98% of short

sample limit) in a few training steps.

TAMU Dipole

Magnet Model

(Courtesy

P. McIntyre)
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 Transmission Line Design (1/4)

• FNAL has developed a “transmission line” magnet design as a low-
field (2 T), and possibly low-cost, option for VLHC.

• The magnet is made up of a
superconducting power line

surrounded by a splitted yoke.

• The yoke gap is designed to
leave two areas of homogenous

field (combing dipole and

quadrupole magnet functions).

Areas of good field

homogeneity

Superconducting

power line
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 Transmission Line Design (2/4)
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 Transmission Line Magnet (3/4)
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• A 17-m-long
demonstration loop has

been built at Fermilab

and has been excited up

to 100 kA.

• The next step is to
build, a 60-m-long

magnet section.

 Transmission-Line Design (4/4)

Transmission-Line

Test Loop at FNAL


